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During the meandering motion of a dipolar vortex on a p-plane mass is exchanged 
both between the dipole and the ambient fluid and between the two dipole halves. The 
mass exchange (as well as the meandering motion) is caused by variations of the 
relative vorticity of the vortices due to conservation of potential vorticity. Previous 
studies have shown that a modulated point-vortex model captures the essential features 
in the dipole evolution. For this model we write the equations of motion of passive 
tracers in the form of a periodically perturbed integrable Hamiltonian system and 
subsequently study transport using a ‘dynamical-systems theory’ approach. The 
amount of mass exchanged between different regions of the flow is evaluated as ii 

function of two parameters: the gradient of ambient vorticity, /I, and the initial 
direction of propagation of the dipole, a,. Mass exchange between the dipole and the 
surroundings increases with increasing both p and ao. The exchange rate (amount of 
mass exchanged per unit time) increases with and has a maximum for a particular 
value of a. (z 0 . 6 2 ~ ) .  Dipolar vortices in a rotating fluid (with a sloping bottom 
providing the ‘topographic’ p-effect) show. in addition to the relative vorticity 
variations, a second perturbation that leads to exchange of mass. The points where 
vorticity is extreme approach each other as the dipole moves to shallower parts of the 
fluid and separate as the couple moves to deeper parts. This mechanism is studied 
independently and it is shown to lead to a stronger exchange between the dipole halves 
and the ambient fluid but no exchange between the two dipole halves. 

1. Introduction 
The dynamics of two-dimensional vortices has been intensively studied in recent 

years. Much of this interest comes from the geophysical fluid dynamics and plasma 
physics communities. In geophysical flows the two-dimensionality is caused by the 
geometry of the domain (horizontal scales generally being much larger than vertical 
scales), rotation and stratification; in plasmas two-dimensionality may be established 
by the presence of a magnetic field. The richness of phenomena exhibited by two- 
dimensional flows is further increased by the presence of inhomogeneities in the media : 
gradients of ambient vorticity are present in geophysical flows, primarily due to the 
variation of the Coriolis parameter with latitude, but variations of the fluid depth can 
effectively result in a gradient of ambient vorticity. In plasmas equivalent effects are 
produced by density gradients. 

One particular vortex that has received much attention is the dipolar vortex. This 
vortex has two remarkable properties: it possesses a separatrix and it has a non-zero 
linear momentum. This means that the dipole provides an efficient mechanism for the 
transport of mass and momentum over large distances compared to the vortex radius. 

t Present affiliation: CICESE, A.P. 2732; Ensenada, B.C., Mexico. 



140 0. U. Velasco Fuentes, G .  J .  F. i u n  Heijst and B.  E. Crenzers 

In particular, oceanic dipolar vortices might play an important role in the transport of 
scalar properties such as heat, salt, nutrients and other biochemical components. It has 
also been suggested (McWilliams 1980) that an atmospheric blocking is in fact a huge 
westward travelling dipole (WTD) that remains stationary due to the eastward 
atmospheric circulation. This stable disturbance may have a latitudinal scale of up to 
45" and can exist for a couple of days to two weeks. Coherent vortices may also be 
responsible for anomalous transport in magnetically confined plasmas (Yabuki, Ueno 
& Kono 1993; Horton 1984). 

Fundamental processes such as propagation and collision of dipolar vortices on a /I- 
plane have been studied numerically and analytically in recent years (e.g. Makino, 
Kamimura & Taniuti 1981 : Nycander & Isichenko 1990). Most studies are based on 
the equivalent barotropic vorticity equation (or Hasegawa-Mima equation, as it is 
called in the context of plasma physics) and all have shown the same properties of the 
modulated point-vortex model introduced by Kono & Yamagata (!977), namely. 
meandering of a single dipole around lines of equal ambient vorticity and soliton-like 
collision of aligned identical dipoles. 

More recently the meandering motion of a single vortex dipole on a (topographic) 
P-plane has been verified experimentally (Kloosterziel. Carnevale & Philippe 1993; 
Velasco Fuentes & van Heijst 1994, hereafter called VFvH). Kloosterziel e t  al. 
observed, in both visualization experiments and numerical simulations, the detrainment 
and entrainment of fluid in the form of a tail in the wake and spiral structures in the 
interior of the dipole, respectively. VFvH observed the same features in the 
visualization experiments and measured the alternating asymmetries in the stream 
function, which is the primary mechanism for entrainment and detrainment. A second 
mechanism for transport, only present on the topographic /!-plane, was also observed 
in both visualizations and flow measurements. As the dipole moves uphill the distance 
between the two halves increases, causing entrainment of fluid, whereas when i t  moves 
downhill the dipole halves approach each other, resulting in detrainment of fluid. 

\n this particular case transport of fluid is dominated by advection so that the 
relative motions of fluid parcels are all important. The study of these motions 
('Lagrangian' view) can be pursued if the velocity field of the flow ('Eulerian' view) is 
known for all times. Using the point-vortex approach, and given a particular set of 
initial conditions, the positions and strengths of the point vortices are known for all 
times, and consequently so is the stream function. The motion of individual particles, 
which is far more complex than the motion of the couple itself, can thus be extensively 
analysed using recent developments in the theory of nonlinear dynamical systems 
(Rom-Kedar, Leonard & Wiggins 1990; Wiggins 1992). The stream function is also 
time periodic, and the problem can be reduced to the study of transport in a two- 
dimensional map (the Poincare map). First we identify the structures in the flow that 
are responsible for transport between different flow regions : the hyperbolic fixed points 
of the Poincari map (stagnation points in the unperturbed flow field) and the 
associated invariant curves or manifolds passing through these points. The many 
intersections of these manifolds form a complicated structure (keteroclinic tangle) that 
is responsible for the transport of fluid between different regions of fluid. Knowledge 
of the dynamics of the heteroclinic tangle enables us to calculate the amount of mass 
exchanged between the two dipole halves as well as between the dipole halves and the 
ambient fluid. 

This 'dynamical-systems theory' approach was used by Rom-Kedar et al. (1990) to 
study chaotic particle motion due to a point-vortex dipole embedded in an oscillating 
external strain-rate field. Their work should be consulted by readers interested in a 
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more detailed discussion of the techniques used in the following sections. Hobson 
(1991 a, b) used the point-vortex model to study the motion of dipolar vortices on the 
/J-plane as well as the advection of passive tracers. It was shown that the stable and 
unstable manifolds intersect transversally and therefore that the motion of particles is 
chaotic (Hobson 1991 0). 

A dipolar vortex on the y-plane (a plane where the Coriolis parameter changes 
quadratically with the distance to the pole) shows the same qualitative behaviour as the 
dipole on the /?-plane, namely periodical meandering motion around lines of equal 
ambient vorticity (Yabuki et a/. 1993; Velasco Fuentes 1994). Consequently. the 
exchange of mass between the dipolar vortex and the ambient fluid obeys the same 
mechanism as the one discussed here, with the difference that the dipolar vortex is 
confined to a certain region of the plane and periodically returns to regions where it 
has been before (Velasco Fuentes 1994). 

The present paper is organized as follows: in $2 fluid exchange between the dipole 
and the ambient fluid is illustrated in an experiment and the physical mechanism for 
transport is discussed; in # 3  the equations of motion of passive particles in the velocity 
field of a modulated point-vortex dipole are written in the form of a periodically 
perturbed integrable Hamiltonian system and a few important results on the theory of 
transport in dynamical systems are reviewed; in 94 the numerical results of transport 
in this model are presented; 95 is devoted to a perturbation specific to the ‘topographic’ 
b-plane, namely the variation of the distance between the dipole’s halves as the vortex 
moves into shallower or deeper regions of the flow; in 96 we make a comparison 
between the point-vortex model and experimental observations for a few points in the 
parameter space. Finally we summarize and give some conclusions in 97. 

2. The physical mechanism for transport 
For the motion of an inviscid homogeneous fluid in a shallow layer on a planet 

rotating at a constant angular velocity 52, one may derive the following conservation 
relation : 

where D/Dr = ?/C?t+u.V is the material derivative in two dimensions; 0 is the vertical 
component of the relative vorticity o = V x u = (0.0.0)); f =  252, sin Q is the Coriolis 
parameter, denoting the (local) vertical component of the ambient vorticity as a 
function of the latitude 4 ;  and h(.u,y) is the fluid depth. 

Let us first consider the case of a layer of fluid with constant depth h,. The horizontal 
dimensions are assumed to be small, so that (i) the curvature of the domain enters ( I )  
only through the variation of the Coriolis parameter; and (ii) the Coriolis parameter 
changes linearly in the north-south direction y ,  i.e. j= f, +,b’y, where f ,  = 252, sin #,, 
and /? = (252JR) cos 9,. with R the Earth’s radius. This approximation is known as the 
8-plane model and leads to a simplified expression for conservation of potential 
vorticity : 

n 
U 
-((W+Py) = 0. 
Dr 

Let us assume now that the Coriolis parameter is constant in space,f=.f,, which is 
the case in a rotating (laboratory) tank and is a good approximation for motions in the 
ocean or in the atmosphere with a scale of about 100 km. Let h have a small linear 
variation in some direction. say y. so that the fluid depth as a function of position is 
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FIGURE I .  Evolution of a dipolar vortex on the p-plane according to the modulated point-vortex 
model. The thick line is the boundary of the fluid that initially lies within the unperturbed separatrix. 
The broken line represents the instantaneous separatrix. Time increases from left to  right and from 
top to bottom and the interval between subsequent frames is approximately one eighth of the 
oscillation period. 

given by h(y) = h,(l -SF), with s a small parameter. Substituting this expression in (1) 
and expanding the result in a Taylor series one obtains 

(3) 

where a small Rossby number (w/fu 4 1) is assumed. This equation is equivalent to (2), 
showing that to this order of approximation the dynamics of a rotating fluid in a 
container with a linearly varying bottom topography is equivalent to that of a fluid on 
a /)-plane, with the new 'gradient of ambient vorticity' given by p = sJ;. 

The dynamical equivalence between the bottom topography and the gradient of the 
Coriolis parameter is used to study /?-plane dipoles in the laboratory. Experiments were 
carried out in a rectangular tank of horizontal dimensions 100 x 150 cm2 and 30 cm 
depth mounted on a table rotating with angular speed 52, = 0.56 s-', so that the 
Coriolis parameter,f, = 252, = 1.12 s-'. A false bottom was raised 4 cm along one of 
the long sides to provide the (topographic) /?-effect and the fluid depth at the centre of 
the tank was chosen to be 13cm and 23 cm. With these parameter settings the 
equivalent value of /? measured 0.194 and 0.344 m-I s-'. respectively. 

D 
-((W+S~,J)) = 0, 
Dt 
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FIGURE 2. Sequence of experimental images showing the meandering of a dipolar vortex on a 
topographic /?-plane. The dipole travelled initially northward (i.e. towards shallower fluid). The 
images were taken at times (a) r = 30 s, (b)  45 s, (c) 60 s, ( d )  75 s, ( e )  90 s, (.f) 105 s, (g) 120 s, (h )  160 s, 
( i )  190 s, after withdrawing the cylinder. Experimental parameters: f = 1.12 s-', h,, = 0.13 m, 
s = 0.3 m-', /3 = 0.344 m-I s-l. 

A two-dimensional dipole vortex was generated by slowly moving a small, 
bottomless cylinder of 8 cm diameter in a straight line relative to the rotating tank, 
while gradually lifting it. The vorticity generated by the motion of the cylinder 
accumulates in a dipolar structure in the wake of the cylinder. This dipolar flow is 
confined in a vertically aligned Taylor column, a feature well-known in rotating fluids. 
Dye (fluorescein) was added to the fluid within the small cylinder before the start of the 
experiment. In each experiment the flow was recorded with a video camera mounted 
in the rotating frame about 150 cm above the free surface of the fluid. 

Let us recall the evolution of a modulated point-vortex dipole on the P-plane during 
one oscillation in order to clarify the transport mechanism in the meandering dipole. 
The dipole is initially symmetric and carries with it a finite amount of fluid (the area 
inside the unperturbed separatrix, see figure l a ) .  However, as the dipole moves 
northward, the negative vortex becomes stronger and the positive one weaker, leading 
to an asymmetric (instantaneous) separatrix (figure 16): the area of fluid orbiting 
around the negative vortex becomes larger, implying that some ambient fluid has been 
trapped, while the area of fluid orbiting around the positive vortex becomes smaller, 
which means that some of the interior fluid now lies outside the separatrix and will be 
detrained (figure lc). As the dipole returns to the initial latitude (figure le), the 
asymmetries in the separatrix disappear. The dipole continues travelling southwards 
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though, and becomes asymmetric again. Because of its larger strength, the area of fluid 
trapped by the positive vortex increases, while the area of the weaker negative vortex 
decreases (figure I f ) .  The dipole returns to its initial latitude (figure 1 h)  and the process 
is repeated. 

Similar changes in the dipole's relative circulations and consequently in the shape of 
the separatrix were measured in laboratory dipoles by VFvH (see figures 6-9 of that 
paper). The continuous changes in relative circulation are caused by the squeezing and 
stretching of the fluid column in the topographic P-plane. However, the fluid depth 
variations have further effects: as the dipole moves uphill the distance between the two 
halves increases, causing entrainment of fluid, whereas when it moves downhill the 
dipole halves approach each other, resulting in detrainment of fluid. Figure 2 shows the 
entrainment and detrainment of fluid in an experimental dipole. The sequence shows 
qualitative similarities with the point-vortex model (figure l ) ,  as well as some 
differences that will be discussed in §6.  

3. Theory 
The trajectory of a dipolar vortex on the P-plane can be simulated by a couple of 

modulated point vortices, at least for some period of time and for some range of the 
dipole's initial direction of propagation (see e.g. Zabusky & McWilliams 1982; VFvH). 
In particular, VFvH found good quantitative agreement between the model and 
laboratory observations when the dipole has initially an eastward component in its 
motion, which leads to a sine-like trajectory. This agreement was found both in the 
dipole trajectory and in the varying strength of the individual vortices for initial angles 
as high as in (VFvH). Therefore this simple model may be used to make quantitative 
estimations of mass exchange for these dipoles. On the other hand, for dipoles with a 
westward motion (initial angle larger than in) the point-vortex model and the 
laboratory observations agree only in the perturbation enhancement mechanism and 
the trajectories are similar only for a short time. However, the mass exchange displayed 
by the point-vortex model in this interval might shed some light on the instability of 
the continuous dipole. 

3.1. Aduection equarions : n Hainiltonian system 
In the point-vortex model of a dipole (see e.g. Kono & Yamagata 1977; Zabusky & 
McWilliams 1982; VFvH) it is assumed that only two particles are active during the 
whole flow evolution and. because of conservation of potential vorticity, the 
circulations of these point vortices are modulated according to 

where 6 is the latitudinal coordinate of the dipole's centre and a is the direction of 
propagation measured from the east direction (see figure 3n). It  is also assumed that 
the couple is initially symmetric (with circulations K~ and - K J  and the vortices are 
separated a distance d. (Note that P* is equivalent to xL2P in VFvH, where xL2 is the 
area associated with the point vortex.) 

The path of the couple is described by two ordinary differential equations for the 
latitudinal coordinate 6 of the dipole's centre and the direction of propagation a :  

d a  - P* - --<, a -=  Usinor, - 
dr dt xd2 
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FIGURE 3. (a) Schematic representation of the point-vortex dipole on the P-plane. (b)  Phase portrait 
z-t; the thick line indicates the initial conditions for an initially symmetric dipole. All solutions are 
time periodic, and a is a n  even and 5 is an odd function of time. 

where KO P* u = -+-(cosa,-cosa). 
2nd 4n 

Figure 3(b) shows the periodic character (with period T )  of all the solutions for an 
initially symmetric dipole. For the purposes of this paper it is important to notice the 
symmetries of the solutions. The thick line indicates the initial conditions: a = a, and 
c(0) = 0. With these initial conditions, the direction of propagation a(t)  is an even 
function of time while the latitudinal displacement c(t) is an odd function of time. 
Furthermore, the following relations are valid : 

( ( t+ iT)  = - ( ( t ) ,  a( t+iT)  = -a(t), ~ - , ( t + i T )  = - K ~ ( I ) .  (7) 

The stream function of the flow in a frame moving with the dipole is 

1 
Y = - - { K~ In [.x2 + ( y - $d)2] + K~ In [x2 + ( y + ad)2]} + iQ(.x2 + y’) - Uy,  (8) 4R 

where 52 = aa/at. The equations describing the trajectories of fluid particles are 

This is a Hamiltonian system with Y playing the role of the Hamiltonian. If the flow 
is steady (Y is time independent) particle motions are integrable, the trajectories being 
simply the streamlines. Time-dependent flows, however, can produce chaotic particle 
trajectories, at least in some regions of the flow. Using the stream function given by (8) 
the advection equations (9) become 

where the definitions Y+ = yf:d and I ,  = x2+ Y2, have been used. These equations, 
together with the evolu6on equations (4k(6), fom-a complete set of equations for the 
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study of particle trajectories in the velocity field of a meandering dipole on the /I-plane. 
For most of the analysis that follows this form of the equations is suitable. However, 
for the perturbation calculations (Melnikov theory). we need to express the equations 
in the form of a periodically perturbed integrable Hamiltonian system : 

d.uldr =f i ( .%.Y)+p*g,  [X,.V15(1;P*,a,),a(t;P*,a,)l, (12) 

dy/dt = ~ ~ ( s , . ~ ) + / j * g ~ [ . u , y ,  5(t;/I*.cxo),cL(~;p*.ao)]. (13) 

The functionsj; and gi are given by 

where K I B  = -~-~d(coscx-coscx~)' (18) 

Keg = - 6 + $d(cos cL - cos a"), 

52, = -2,c/d', (20) 
u p -  - - a  (cos a - cos a,). 

(19) 

(21) 
This representation is exact. 

3.2. Lobe ~vticimics 

The use of a Poincare map - the map of the particle location [.y(t,), y(i,)] to the location 
one period later [s ( t ,  + T ) ,  y(t ,  + T ) ]  - significantly simplifies the description of particle 
motion in the velocity field of the meandering dipole. The map is constructed by 
sampling the position of a particle (relative to the dipole) every time the dipole returns 
to its initial configuration, i.e. every time 

The streamline patterns of the stationary flow (i.e. for /I* = 0, but also for a, = 0, rt) 
are illustrated in figure 4(a). There exist two fixed points p +  and p -  corresponding to 
the front and rear stagnation points of the dipole, respectively. Both are of hyperbolic 
type so that there is a collection of orbits forming a line that approaches p-  as t + + a, 
called the srcible manifold, and a collection of orbits that emanates from p +  (i.e. 
approaches p +  as t + - a), called the unstable matiifold. In the unperturbed case the 
unstable manifold of p+ and the stable manifold of p-  coincide and correspond to the 
separatrix. There are additionally two elliptic fixed points corresponding to the 
positions of the point vortices. The separatrix divides the flow in three regions: the free 
flow region, where particles simply move from the right to the left along the open 
streamlines; the positive-vortex core where particles rotate anticlockwise; and the 
negative-vortex core where the particles rotate clockwise. The particles in the cores are 
trapped and travel permanently with the dipolar vortex. 

For p* =k 0 but sufficiently small the fixed points persist and the unstable manifold 
of pi- smoothly emanates from p+ as before, but in this case undergoes strong 
oscillations as it approaches p- .  Similarly, the stable manifold of p-  smoothly emanates 
from p- but undergoes strong oscillations as it approaches p+. The structure that results 
from the intersection of the manifolds of the two hyperbolic points is called a 

= 0 and cx = a". 
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FIGURE 4. (a) Streamlines of an unperturbed point-vortex dipole. (b)  The heteroclinic tangle in the 
perturbed case. The thick line represents the unstable manifold of p ,  and the thin line the stable 
manifold ofp- .  (c) The mechanism for transport between the cyclonic vortex and the ambient fluid: 
region ABCD is mapped to A ’ B C D ’  (see text). ( d )  Transport between the two dipole halves: region 
abcd is mapped to a’b’c‘d‘ (see text). 

keteroclinic tangle, see figure 4(b), which shows the heteroclinic tangle for /3* = 0.2 and 
a” = 0 . 3 1 8 ~ .  The three regions identified in the unperturbed case persist in a reduced 
form but the new limit between them is not a line but a ‘chaotic sea’ or mixing region. 

The intersecting manifolds expose the mechanism for transport of fluid between the 
interior and the exterior of the vortex dipole, where interior and exterior are yet to be 
defined for the perturbed case. Usually, the definition that best approximates the 
unperturbed case is chosen. However, for a dipole on a P-plane any choice greatly 
differs from the symmetric separatrix (compare figures 4a and 4c). Let A and C be two 
adjacent intersections between the stable and unstable manifolds, and B a point on the 
unstable manifold and D a point on the stable manifold, as indicated in figure 4(c). If 
one chooses the boundary between the cyclonic vortex and the ambient fluid as the line 
formed by p +  C on the unstable manifold of p + .  and Cp- on the stable manifold of p - ,  
then a large fraction of fluid initially located out of the dipole is included as interior 
fluid. On the other hand, a large fraction of fluid initially located in the dipole is 
excluded from the vortex if the boundary is chosen as the line p +  A on the unstable 
manifold of p + ,  and Ap-  on the stable manifold of p - .  With the use of the first 
definition, the area ABCD in figure 4(c), which maps to the area A‘BC‘D’ ,  represents 
the fluid that will be detrained from the cyclonic vortex in the next cycle; whereas the 
dotted area near A ,  which maps to the dotted area near A’, represents the fluid that will 
be entrained. Since the flow is incompressible, the area entrained is equal to the area 
detrained in every cycle. The overestimation of detrainment produced with the adopted 
definition of the boundary is corrected with the use of an effectively detrained area, 
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which is simply the intersection of the detrainment lobe with the area enclosed by the 
unperturbed separatrix. 

Similarly, the tangle formed by the unstable manifold of p-  and the stable manifold 
of p+ gives rise to transport of fluid between the cyclonic and the anticyclonic halves 
of the dipolar vortex (figure 4 4 .  In this case the area abcd is mapped to a'b'c'd', i.e. 
moves from the cyclonic half to the anticyclonic one; and the same amount of fluid (the 
dotted area close to (1) leaves the anticyclonic vortex half and enters the cyclonic one. 

The unstable manifold is numerically constructed by computing the evolution of a 
small line located on the fixed point forward in time. This line will be stretched in the 
direction of the unstable manifold. Here we have used a straight line of length 0.ld 
(with d the distance between the point vortices) placed perpendicularly to the symmetry 
axis of the dipole; the use of different lengths or orientations of the line leaves the lobe 
area unchanged within 0.5 %. The stable manifold is constructed in a similar way, but 
the integration is now backwards in time. A fourth-order Runge-Kutta scheme was 
used for the time integration. New nodes were added during the integration. the new 
positions being computed with cubic splines between smooth segments of the line. The 
exchange of mass can be evaluated directly from the discrete set of points defining the 
manifolds. Once a single lobe is identified the area follows from j i  = $.vdj- along 
ABC-CDA. This method is valid for every amplitude of perturbation /I*. 

3.3 .  Melnikoil theory 

Without explicitly solving the advection equations (10) and (1 I ) ,  it  is possible to predict 
the behaviour of the stable and the unstable manifolds using the Melnikoo ,firnction. 
This function is. up to a known normalization factor, the first-order term in the Taylor 
expansion about /I* = 0 of the distance between the stable and the unstable manifolds. 
The Melnikov function M(t,)  is defined as 

W t , J  = J-/?/ I.!; [x,(t) lg2 Ix,(th a t  + f , ;  p*. a,,), a([ + 4,; /I*? 

- .L[x , ( t ) l s ,  [x , ( t ) . t ( t+ t , , ;p, ,a,) ,cc(t+f, ,;p, .  2,)l}dt3 (22) 

where x, , ( t )  = ( .v , t ( f ) , j -u( t ) )  represents the particle trajectory along the separatrix of the 
unperturbed dipole. The Melnikov theorem shows that a simple zero of M(t , )  implies 
a transverse intersection of the stable and the unstable manifolds (see e.g. Rom-Kedar 
et (11. 1990), while one intersection implies the existence of infinitely many intersections 
of the manifolds (i.e. a keteroclinic tangle). This heteroclinic tangle gives rise to 
horseshoe maps and forms therefore the underlying mechanism for chaotic particle 
motion (see e.g. Rom-Kedar et nl. 1990). The Melnikov function therefore yields a 
specific criterion for the existence of chaotic particle trajectories in terms of the system 
parameters (a,, and /?* in our case). 

One can also obtain an OV,) approximation for the area of a lobe by using the 
Melnikov function (Rom-Kedar et a / .  1990). The area of a lobe is given by 

where t,, and to, are two adjacent zeros of the Melnikov function M(t,) (i.e. they 
correspond to adjacent intersections of the unstable and stable manifolds). 

The Melnikov function (22) and the lobe area (23) were computed numerically in the 
following way. (i) The trajectory along the unperturbed separatrix x , ( t )  and the 
equations of motion (6) were integrated using a fourth-order Runge-Kutta scheme; (ii) 
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the velocity fields.h(r) and g, ( t )  were calculated using the results of (i); and (iii) the 
integrals were evaluated using the trapezoidal rule. The infinite limits of the integral in 
(22) were replaced by large but finite limits (large means here that the use of a larger 
value leaves the integral unaffected). 

Some .yminie t r ies 
Note that if the particle trajectory along the separatrices is chosen in such a way that 

x J t  = 0) = 0 (i.e. t = 0 at the intersection of the heteroclinic trajectory with thep-axis), 
the following symmetries hold for the time-independent components of the velocity 
field : 

f ; tx , (o l  =fib,‘(- 01, 
. f S X , , ( t ) l  = - f@J - 01. 

Then the Melnikov function M(t,,) is equal to zero for all t , ,  = to* such that the time- 
periodic components of the velocity field have the same symmetry with respect to tt : 

g,[x,(t), 1: + 11 = g,[x,( - f) , t ,* - 4. 
g,[x,(t), 1: + 11 = -&[Xu( - 0, t: - [ I .  

These symmetries are satisfied if ((f,* + t )  = LJtt - t )  and a(t: + t )  = &a([,* - t ) ,  as can 
be seen in equations (18)-(21). Thus t,* must correspond to an extreme latitudinal 
displacement in the motion of the dipole. In general r: = a(n +!J T for n an integer and 
T the period of the dipole’s meandering motion. M(t,) has thus an infinite number of 
isolated zeros, two for every period of the perturbation. 

4. Numerical results for strength perturbations 
4.1. Entrainnrent and detrainment 

The area enclosed by one dipole half has been chosen as the unit area for the evaluation 
of the mass exchange; therefore, a lobe that occupies say 10% of the cyclonic vortex 
has an area p = 0.1 in our arbitrary system. Figure 5 shows the detrainment lobe (of 
the cyclonic half) for constant a, = 0 . 3 1 8 ~  and increasing p,, = (a) 0.04, (b) 0.08, (c )  
0.12, ( d )  0.16 and (e )  0.2. The lobe is thin and long for small p* and reduces in length 
and increases in thickness with increasing p*. The area of the lobe increases with p*. 
but it occupies regions close to the unperturbed separatrix of the cyclonic half. 
indicating that a large portion of the core will remain trapped by the vortex. Similarly. 
figure 5 also shows the detrainment lobe for constant ,8* = 0.1 and increasing initial 
orientation angles a, x (f) 0.127~, ( g )  0.254~,  (h) 0 . 3 8 1 ~ ,  (i) 0 . 5 0 8 ~  and (11 0.635~. The 
lobe increases in length and in thickness with increasing a,. Obviously the lobe area 
also increases. The lobe now ‘penetrates’ closer to the positive point vortex, thus 
reducing the size of the positive core. 

Figure 6(a )  shows the amount of fluid p exchanged between the cyclonic half and the 
ambient fluid during one oscillation of the dipole computed using the Melnikob 
function. The initial angle is varied from 0 to 71, and p* is varied in the range 0-0.3. The 
area of the lobe increases with both increasing ,8* and a(,. The area is zero for a. = 0:  
this initial condition corresponds to the stable equilibrium (ETD) and no change of 
circulation occurs in the couple, and therefore no change of the shape of the separatrix. 
For a,, +I[: the area of the lobe does not go to zero, since a(, = n corresponds to the 
unstable equilibrium. The area of the lobe tends to a finite value which depends on /?*. 
For &.= 0 the lobe area is also zero because then there is no variation of the 
circulation of the vortices, independently of the direction of propagation. 
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FIGURE 5. The detrainment lobe of the cyclonic dipole half for constant a, = 0 . 3 1 8 ~  and (a) ,!I* = 0.04, 
(6)0.08,(c)O.l?,(d)0.16and(e)O.2.Thedetrainment IobeforconstantP, = 0.1 and( f ) r , ,  z 0.127~. 
(g) 0 .254~ .  (11) 0.381~.  ( i )  0 . 5 0 8 ~  and 0 0.635~.  

Figure 6(b) shows the exchange rate p* (i.e. the amount of fluid that is exchanged 
per unit time) between the cyclonic half and the ambient fluid. This rate is obtained by 
dividing the lobe area (figure 6a)  by the period of the dipole's oscillation (i.e. the 
perturbation period). The rate is zero for /3* = 0 and for a, = 0, where the lobe area 
is zero, but also for a, = X, where the period of the oscillation goes to infinity. 
Therefore, for every value of /3* 4 0 the exchange rate has a maximum and this occurs 
at the same value of a" x 0.62n, within the resolution of our calculations. 

The sections a. = 0 . 3 1 8 ~  and /3* = 0.1 in the parameter plane have been chosen to 
compare the results of Melnikov calculations and the area of the lobe computed by 
direct numerical integration of (10) and (1  1). Both methods agree very well, as they 
should, for small values of both /I* and a, (figures 7a,c). For larger values the 
Melnikov function underestimates the amount of fluid that is detrained. The exchange 
rate increases in a linear manner with /3* (figure 7 4  and shows a maximum for 
a(, z 0 . 6 2 ~  (figure 76). Both methods show this maximum although they are slightly 
shifted, the one from direct numerical integration occurring for a greater value of a,. 

The total exchange and the exchange rate between the negative vortex and the 
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FIGURE 6. (a) Area (p) of the lobe detrained from the cyclonic half to the ambient fluid computed 
using the Melnikov function. Contour interval 0.025, / L  is zero along both axes. (6) Exchange rate 
p* = p / T  (where T is the period of the dipole's meandering motion). Contour interval 0.005. 

ambient fluid are exactly the same as those described above for the positive vortex. 
Because of the symmetries (7) the manifolds in the PoincarC section t = 0 are the mirror 
image with respect to the x-axis of the manifolds in the Poincare section t = i7'. The 
exchange of mass between the two dipole halves shows the same qualitative behaviour 
as the exchange with the ambient fluid. The numerical calculations have revealed an 
approximate quantitative relation between them: pc, = (1 3 3 5  k O.025)pM, where p is 
the area of the lobe and the subindexes I/, M indicate exchange with the ambient fluid 
(through the upper separatrix) and between the two dipole halves (through the middle 
separatrix), respectively. 

Figure 7 also shows the effective area of fluid (p!) detrained during the first period 
of the dipole's meandering motion. This area IS simply the intersection of the 
detrainment lobes (as illustrated in figure 5 )  and the unperturbed separatrix (figure 4a) .  
Approximately 50% of the detrainment lobe lies within the initial separatrix. For 
the range of parameters studied here the following relation has been found : 
p E  = (0.49f0.01)p. 

The amount of fluid detrained in one period does not depend on the period as it does 
in the case of a vortex pair in an oscillating strain flow studied by Rom-Kedar et a/ .  
(1990). The most likely reason is that on the P-plane the perturbation period is, for the 
parameter range studied in this paper, much larger than the typical time scale of dipole 
propagation: the length of the dipole's trajectory during one oscillation is at least 
several times the distance between the point vortices. 

Here the dominant factor is the amplitude of the perturbation, measured by the term 
/3* A ,  where A is the amplitude of the latitudinal displacement. The fluid area detrained 
in the first period is given by 

,uE = (0.32+0.01)/3,A. (24) 
This result can be understood in the following way: the amount of detrained fluid 

should be related to the difference S ,  between the area enclosed by the unperturbed 
separatrix and the area enclosed by the separatrix at the position of maximal 
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FIGURE 7. Lobe area ( I t )  and exchange rate ( p * )  computed using the Melnikov function (solid line), 
and direct numerical integration of the advection equations (asterisks). & = 0.1 for (a) and (b ) ;  
a,, = 0.318~ for (c.) and ( d ) .  The diamonds indicate the 'effectively detrained area' (see text). 

asymmetry of the dipole (figure 8a) .  If the perturbation period is of the same order or 
greater than the orbit period 'close' to the separatrix, then most of the fluid located 
outside the current separatrix is advected to the dipole's wake. In contrast, a significant 
portion of this Fluid is recaptured during the same oscillation of the dipole when the 
perturbation period is small. 

The shape of the separatrix depends on the ratio c: = - K ~ / A - ~  and the distance 
between the vortices d,  which is constant. S ,  has been computed numerically as a 
function oft' and it has been found to be given by S ,  z 0.15 ( 6 -  1) for 1 < E < 2 (figure 
8b) .  On the 8-plane the extreme values of t' are reached at the position of maximum 
displacement in the latitudinal direction, and the most important term in determining 
the amplitude of the strength's perturbation is 8, A ,  as can be deduced from (4) and 
(5 ) .  The ratio between the circulations becomes E z 1 +28, A, leading to S,  z 0.38, A.  
The latter relation compares very well with (24). 

The same argument explains the almost constant ratio between the amount of fluid 
exchanged by the two dipole halves and the fluid exchanged between one half and 
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FIGURE 8. (a) The areas S,,  S,  and S, are part of the open flow, the cyclonic core or the anticyclonic 
core, depending on whether the dipole is symmetric (broken line) or asymmetric (solid line). (b)  S, ,  
S ,  and S, as functions of the asymmetry of the dipole 6 = - K J K ,  ; the line is an approximation given 
by S = 0.15(~- 1)+0.04(6- 1)2+0.005(c- l), .  

the ambient fluid (1.585 f 0.025 according to the Melnikov function calculations). 
Numerical computations using the asymmetric separatrices give a ratio of SJS, = 1.6 
(see figure 8). 

4.2.  Long time spread of particles 
In the previous section we evaluated the amount of fluid (lobe area) that is exchanged 
between different regions of the flow in one period of the meandering dipole. The 
specific fluid area that undergoes such a process was also determined (i.e. the 
detrainment lobe). In this section we explore the evolution of particles for longer 
periods. We discuss three cases: (a)  a dipole with wave-like motion and net eastward 
drift (au = 0.159n), (6)  a dipole moving along an %shaped path and zero net drift 
(a, = 0.713495~), and ( c )  a dipole with cycloid-like motion and net westward drift 
(a, = 0.796~).  The choice is motivated by one important difference between these 
cases: in (a)  the dipole travels indefinitely in the eastward direction without ever 
returning close to its initial position, in (b)  the dipole returns periodically to its initial 
position, and therefore fluid that was detrained can be recaptured by the dipole in a 
later passing, and in (c) there is a series of points through which the dipole passes twice. 

Particles were initially placed on a regular array within the detrainment lobe of the 
positive vortex (' yellow' particles) and the negative vortex ('green' particles), and their 
positions were sampled at times nT, where n is an integer and T is the period of the 
dipole's meandering. 

In the wave-like mode (figure 9a)  the dipole simply leaves a very thin and long tail 
along the meandering path. In case (b)  one observes alternating bands of ambient and 
interior fluid, and the particles are spread in the latitudinal and in westward directions 
over distances larger than the scale of the trajectory of the dipole itself (indicated by 
a white line in figure 96) .  There is a net westward transport of fluid in spite of the 
dipole's zero drift. This can be understood in the following way. As the dipole moves 
northward, the positive vortex (which occupies the west side of the couple) becomes 
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FIGURE 9. Positions of fluid particles a t  t = nT, where T is the dipole’s oscillation period and n is an 
integer number. The yellow particles were originally located within the detrainment lobe of the 
cyclonic dipole half and the green particles within that of the negative half. The white line represents 
the dipole’s trajectory. (a) A dipole in the wave-like regime (a, = 0 . 1 5 9 ~ ) ;  n = 0, I ,  2, 3. (h) The 8- 
shaped trajectory with zero net zonal drift (a, = 0.7134951~); IZ  = I ,  ..., 9. (c) A dipole in thecycloid- 
like regime (a, = 0.796rr), n = 1. ..., 6. 
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weaker and detrains fluid, while the negative vortex (which occupies the east side) 
becomes stronger and entrains fluid. On the other hand. as the dipole moves 
southward. the negative vortex (on the west side of the couple) becomes weaker and 
detrains fluid. while the positive vortex (on the east side) becomes stronger and entrains 
fluid. In both cases the vortex located on the east entrains fluid while the vortex located 
on the west detrains fluid, resulting therefore in a net mass transport in the westward 
direction. Finally. in the cycloid-like mode, some particles are left behind in the form 
of large lobe structures, while other particles form a kind of front that advances in the 
westward direction (figure 9c) .  It can also be observed that the stable cores (the regions 
around the point vortices) decrease in size as the tilting angle increases. 

5. Size perturbations 
The meandering trajectory of a dipolar vortex on a topographic P-plane causes the 

water column to be alternately stretched and squeezed. As a result the distance between 
the vortex centres will decrease as the dipole moves into deep water and increase as the 
dipole moves towards shallower water (see figure 1 1  in VFvH). This process is periodic 
(with the same period as the variation of the vortices’ strengths) and leads to 
entrainment of fluid during the ‘expanding’ phase of the dipole and detrainment of 
fluid during the ‘shrinking’ phase. 

This effect is modelled using the point-vortex dipole with constant circulation K, and 
-K, ,  respectively, but imposing on it a sine-like variation of the distance between the 
vortices : 

(25)  

where do is the initial distance between the vortices (as the dipole is located at its 
equilibrium latitude). The frequency w is the frequency of the meandering motion on 
the P-plane and for simplicity it will be taken as in the linear approximation of VFvH 
(see the solution of equation (2.7) in that paper). The amplitude of the size perturbation 
c,, is related to the parameters of the topographic P-plane in the following 
manner. The depth of the fluid is given by h = h,(l -sy) ,  and by conservation of 
volume the radius of a column of fluid moving on this topography is given by 
r = r,( 1 -.Y&’’’ x r,(l +@J. This relation is assumed to hold for the variation of the 
distance between the two point vortices. In the linear approximation, the latitudinal 
position of the dipole’s centre is given by = Asinwt, where A is the maximum 
latitudinal displacement. This leads to the following expression for the frequency w and 
the amplitude cd of the size perturbation: 

d = do( 1 + cd sin wt) ,  

w = (p* Uo/nd2))”2 

cd = ~ s A  = PA /(452,). 

Because of the symmetry about the x-axis we only need to examine the transport 
across the upper separatrix. Transport across the lower manifold is the same. The 
middle separatrix does not break up and therefore no exchange of fluid can occur 
between the two halves of the vortex dipole. 

The advection equations for the point-vortex dipole with varying size can be written 
in the form of a periodically perturbed integrable Hamiltonian system: 

dx/dt = f,(x, y )  + cd g,(x, -v, t ; w )  + O ( E ~ ) ,  

dpldt = .f&,y) + tdg&Y,  t ;  Q) + O(& 
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FIGURE 10. Transport in the point-vortex dipole with oscillating size: (a) lobe area p,  and ( h )  
exchange rate p* as a function of /I*. The solid line shows the Melnikov function, and the asterisks 
the direct numerical integration of the advection equations. 

by substituting the value of d given by (25) in (10) and ( 1  1) and making a Taylor 
expansion of these equations around do. 

The functions./; are the same as in the P-plane perturbations, see (14) and ( 1 3 ,  and 
gi are now given by 

Defining gi = g’ sin O J ~ ,  and using the symmetries present in the equations [I;. Y+ and 
I +  are even, and .f, and x are odd functions of t for the choice x,(t = 0) = 01, the 
Melnikov function becomes 

r, 

M((n) = cos Q f o  i_, {.fi[x,(t)l g: txu(t)l -J* t X t , ( t ) l g :  [x t i ( t )~}  sin (dtdr. (28) 

The integral is a function of P* through the dependence on o and therefore will be 
denoted by F(P,), which is non-zero for the parameter region studied in this paper 
(0 < /I* < 0.3). M(t , , )  has therefore an infinite number of simple zeros (i.e. M ( t J  = 0 
and c‘M(t,,)/?r, =k 0) for every point in the parameter space. 

In figure 10 the solid line represents lobe area computed using the Melnikov function 
and the markers show the lobe areas obtained from direct numerical integration of the 
advection equations for ed = 0.1. Different values of t,, produce a similar curve, but 
with the lobe areas being some multiple of the ones shown here. 

The lobe area decreases with increasing /I*. This is because the period also decreases 
with P*, and a shorter period allows less fluid to be exchanged. However, this 
behaviour changes for the exchange rate (mass exchanged per unit of time). The 
exchange rate is maximal where wF(/j’,)/2x is maximal. This maximum is reached for 
/I* = 1.8kO.l. 
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FIGURE 1 1 .  Experimental images showing the formation of lobe-like structures after half a period of 
the dipolar motion for different initial direction of propagation and gradient of ambient vorticity: (a)  
a. = fn, p = 0.194 m-' s-', (b)  a, = in, /I = 0.194 m-l s-', (c) a. = fn, p = 0.344 m-' SS', ( d )  a,, = an. 
p = 0.344 m-' s-I. 

6. Experimental observations 
In this section we present results of flow visualizations and compare them 

with numerical simulations. Four combinations of the parameter values /3 = 0.194, 
0.344 m-' s-l and a. = in, 

In figure 11 the dipolar structures are shown after one half of the oscillation, when 
they have returned to their equilibrium latitude. Figure 11 (a, c) shows broad dipolar 
structures, which were started at an angle a, = an. At this stage, undyed fluid is 
entrained at the rear side, advected to the front side along the dipole's symmetry line 
and then wrapped around each dipole half parallel to the boundary of the dipole (the 
separatrix). It is also possible to observe thin spiral structures close to the vortex 
centres, but these patterns were formed during the generation of the dipole and 
therefore they are not related to the entrainment-detrainment mechanism discussed 
here. The different origin of the various patterns shown here are best observed in the 
video recordings of the experiments. For B = 0.344 m-' s-' the dipole shows also a 
lobe structure that is being advected with the long tail (figure 11  c). 

Figure 11 (b, d )  shows dipoles with initial direction of propagation fn. The dipoles 
are now more compact than those with initial direction of propagation a, = an. The 

were used. 
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FIGURE 12. The same as in figure 1 1  but now for numerical simulations using the modulated point- 
vortex model. The hatched areas correspond to fluid initially trapped by the point-vortex dipole. 

spiral structure of ambient fluid is thinner, showing that little fluid has been entrained; 
and larger lobes of interior fluid are left behind, especially for p = 0.344 m-’s-’ 
(figure l ld ) .  

In figure 12 the corresponding numerical simulations are shown. Both strength and 
size perturbations (4)-(5) and (25) are used in the advection equations. The parameter 
values and initial conditions approximately match the values used in the experiments 
(figure 11). A fluid patch limited by the unperturbed separatrix has been followed 
during one half of the perturbation period. 

Figure 12(a) shows two thin lobes, each one originating from a dipole half, and a 
second lobe is being formed in the anticyclonic vortex. Ambient fluid has been 
entrained but it is confined to a thin layer close to the original separatrix, indicating 
that large cores of interior fluid remain trapped by the dipole. On the rear as well as 
on the front side of the dipole the ‘interior’ and the ‘exterior’ fluid are located in 
alternating bands, the ones formed by exterior fluid being thicker. 

Figure 12(c) shows essentially the same feature as figure 12(a) but the lobes as well 
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as the spirals in the interior of the dipole are thicker. These structures are in an earlier 
stage of their evolution because now the period is shorter than in figure 12(a). The 
dipoles in figure 12(6, d) show the same characteristic features and mutual differences 
as the dipoles in figure 12(a,c). Note, however, that a third lobe-like structure appears 
in the anticyclonic vortex. 

Qualitatively, similar features can be recognized such as entrainment and 
detrainment of fluid through the formation of lobes and spiral structures. Note that the 
long tail in the experiment is formed during the generation of the dipolar vortex (see 
VFvH) and is not a result of the perturbations in strength or size. Another difference 
is that the experimental dipoles with a greater eastward component (a, = $K) have a net 
growth and therefore there is mainly entrainment of fluid and hardly any fluid is 
detrained. The growth of the eastward propagating dipoles is caused by the generation 
of relative vorticity in the dipoles exterior (see VFvH); this secondary vorticity field 
gives rise to a shear that might be the cause of the large lobe in the cyclonic vortices 
(figure 11 6, d). 

7. Conclusions 
Mass transport during the meandering motion of a dipolar vortex on the /?-plane is 

investigated. The meandering motion occurs if the dipole travels transversally to lines 
of equal ambient vorticity. Owing to conservation of potential vorticity the relative 
vorticity of the dipole changes asymmetrically, resulting in alternately net positive and 
negative circulation. The stream function pattern changes accordingly, thus providing 
the possibility for fluid to escape or enter the dipolar structure. 

The modulated point-vortex dipole models this basic mechanism appropriately (see 
e.g. Kloosterziel et al. 1993; VFvH). This model is therefore used to study the transport 
of mass between different regions of the flow during the meandering motion of the 
dipole. The equations of motion of passive tracers are shown to have the form of a 
periodically perturbed integrable Hamiltonian system. The time-independent part of 
the stream function is that of the symmetric vortex couple with constant circulations, 
and the time-periodic component corresponds to that of a couple of point vortices of 
the same sign, but with varying intensities. 

Recent techniques of the theory of transport in dynamical systems (so-called lobe 
dynamics, see Rom-Kedar et al. 1990) are applied to calculate the amount of fluid that 
is entrained and detrained in every period of the dipole’s meandering motion as well 
as the rate at which this interchange takes place. These quantities are computed as a 
function of the initial direction of propagation a, and the gradient of ambient vorticity 
@. The amount of mass exchanged increases with increasing /3 and increasing a,, and it 
is approximately proportional to the product /?A. The exchange rate has a maximum 
for a, x 0 . 6 2 ~  for every value of @. 

On a topographic /?-plane the changes in relative vorticity are caused by squeezing 
of the fluid column as the dipole moves uphill and stretching as the dipole moves 
downhill. These processes induce a periodic change in the distance between the points 
where the extreme values of vorticity occur, thus leading to detrainment as the points 
approach each other and entrainment of fluid as the points move apart. The exchange 
of mass due to this mechanism is studied independently using a symmetric point-vortex 
couple separated by a distance that changes periodically in time. For equal amplitudes 
of perturbation (i.e. the same percentage variations with respect to the unperturbed 
value), the size variation causes more exchange of fluid than the variation of strength. 

The point-vortex model is compared with experimental observations for a few points 
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in the parameter space. The deformation of the initial separatrix is computed 
numerically using both modulation of the vortices circulations and oscillation of the 
distance between the point vortices. The comparison is made after the dipole returns 
to its equilibrium latitude (isobath), i.e. after one half of the perturbation period. Good 
qualitative agreement exists in the main features: formation of spiral structures of 
ambient (undyed) fluid in the interior of the dipole and lob-like (dyed) structures left 
behind in the wake of the dipole. The main differences are that the dipoles with a 
greater eastward component grow in the experiment (and therefore there is mainly 
entrainment of fluid) and that larger lobes are formed in the experimental dipoles than 
in the simulations. The observed differences are most likely due to the absence of 
relative vorticity generation in the point-vortex model. As discussed in VFvH this 
secondary vorticity field is responsible for the expansion of dipolar vortices with an 
eastward component and also causes a shear flow, which could also promote the 
shedding of mass. 

The results obtained with the point-vortex model are expected to give a good 
estimate of the mass exchange in the continuous case for the same parameter interval 
where the trajectories behave in a similar way, i.e. for tilting angles less than :n (see 
VFvH). The small mass exchange observed in this region indicates that the eastward 
travelling dipole, besides having a stable trajectory, preserves its mass identity for long 
time. On the other hand, the westward travelling dipole, which has an unstable 
trajectory in the point-vortex model as well as in the experiments, loses a large fraction 
of its mass according to the model. This mass loss also represents, in the continuous 
case, loss of vorticity and leads therefore to the destruction of the dipolar structure. 

Without explicitly computing the mass exchange, Hobson (1991 a) concluded, from 
the structure of the heteroclinic tangles, that the mass exchange should increase with 
the tilting angle. In the discussion of the implications of this result for an atmospheric 
blocking - thought to be a WTD which remains stationary due to the eastward 
circulation - Hobson (1991 a )  concluded that this disturbance does not form a 
complete barrier for mass transport. This may be true, but it cannot be concluded from 
the point-vortex model, which shows that the exchange of mass between a WTD and 
the ambient fluid is large because of the unstable trajectory. An atmospheric blocking, 
however, remains quasi-stationary for long periods. Therefore mass exchange should 
be small according to the results of the point-vortex model. But the interpretation of 
an atmospheric blocking as a dipolar vortex has yet to overcome some difficulties, in 
the first place its surprising stability. 

We thank two anonymous reviewers for their critical comments on an earlier 
version of this paper. 0. U. V. F. gratefully acknowledges financial support from the 
Netherlands Foundation for Fundamental Research on Matter (FOM). 
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